TRUSTED EMBEDDED SYSTEMS BASED ON RISC-V PROCESSORS

Instituto de Microelectrónica de Sevilla

PIEDAD BROX JIMÉNEZ brox@imse-cnm.csic.es

OUTLINE

- 1. Motivation
- 2. Chains of Trust
- 3. Root of Trust (RoT) for Embedded Systems
- 4. Building blocks of a hardware RoT
- 5. Available solutions for Trusted Embedded Systems using RISC-V
- 6. Conclusions

1. MOTIVATION

IMSE

- Open hardware revolution
- Attractive solution:
 - ✓ Open-source, royalty-free Instruction Set Architecture (ISA)
 - ✓ Features to increase computer speed, yet reduce cost and power use
 - \checkmark Optional extensions \rightarrow customized designs
- Processor innovation:
 - \checkmark Attractive solution for industry \rightarrow start-ups
 - $\checkmark\,$ Companies that belongs to RISC-V foundation
- Hardware manufacturer \rightarrow solution for IoT embedded devise

1. MOTIVATION

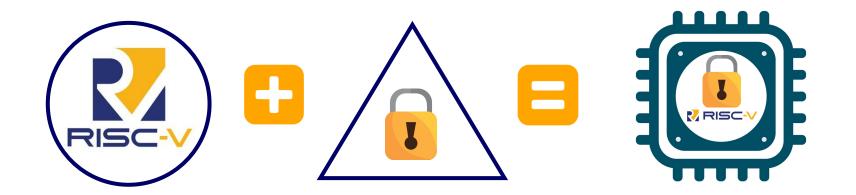
nsti<u>tuto d</u>e

Microelectrónica de Sevilla

IMSE

- Security and Privacy for electronic devices
 - ✓ Digital societies
- The core of cybersecurity \rightarrow CIA triad:
 - ✓ Confidentiality: control access to information
 - ✓ Integrity: data should be trustworthy and accurate over its lifetime
 - ✓ Availability: reliable and constant access to data
- Privacy respectful solutions

1. MOTIVATION


Microelectrónica

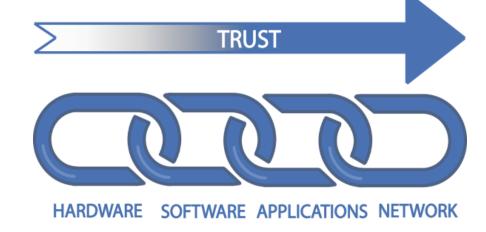
de Sevilla

IMSE

-cnm

- RISC-V vulnerability
 - ✓ Well-known architecture
 - ✓ SCARV: a side-channel hardened RISC-V platform (research project)
- Trusted embedded systems based on RISC-V processors
 - ✓ Hardware dedicated modules
- Multidisciplinary teams

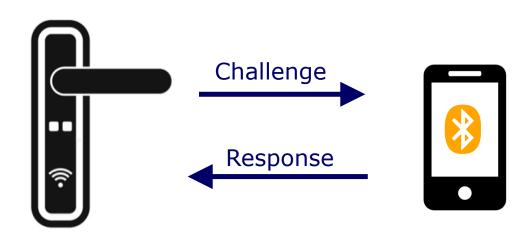
2. CHAINS OF TRUST

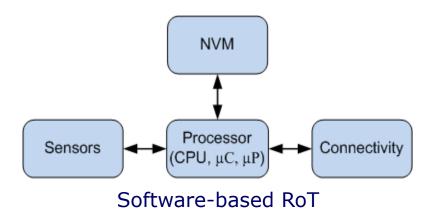

nstituto de

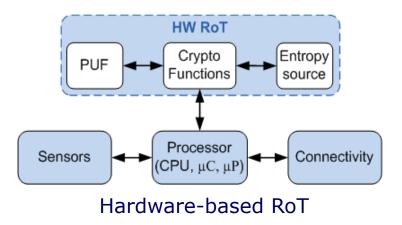
Microelectrónica

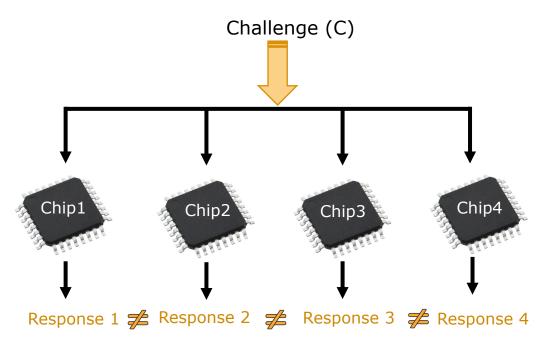
IMSE

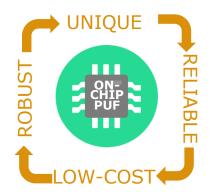
-cnm

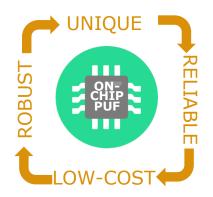

- Hybrid (hardware/software) nature of an embedded system
- A trusted chain is required:
 - ✓ Hardware → device identity
 - Software \rightarrow bootloader and operating system
 - ✓ Applications
 - ✓ Network
- Authentication at every level


3. Rot on embedded systems

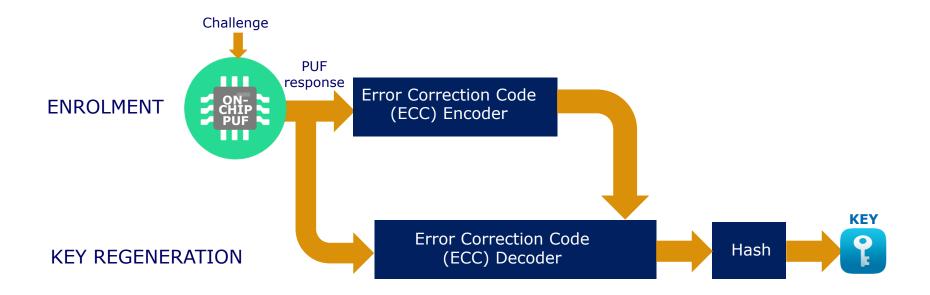

- Root-of-Trust (**RoT**) \rightarrow always be trusted
- Alternatives:
 - ✓ Software
 - ✓ Hardware
 - ✓ Hybrid
- Device Authentication → Challenge-response protocol


- Building blocks [1]:
 - ✓ Device identity → Physical Unclonable Functions (**PUF**)
 - ✓ Entropy source
 - ✓ Crypto functions

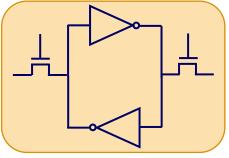

- PUF definition: Challenge-Response Pair (CPR)
- PUF characteristics:
 - ✓ Unclonable
 - ✓ Uniqueness
 - ✓ Reproducibility
 - Unpredictable
- Silicon PUFs [2]:
 - ✓ SRAM
 - ✓ Ring Oscillators
- PUF assumptions:
 - ✓ A Response (R_i) gives negligible info on another Response (R_j)
 - Infeasible to model PUF (accurately)
 - ✓ Physical tampering will destroy it or will modify radically


<u>4. BUILDING BLOCKS OF A HARDWARE Rot</u>


• Design of a silicon PUF

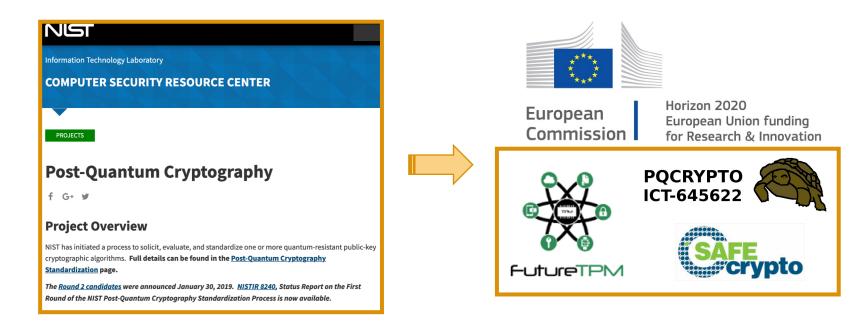

- Design of a silicon PUF
- PUF \rightarrow cryptographic keys:
 - ✓ Key Enrolment Phase

- Design of a silicon PUF
- PUF \rightarrow cryptographic keys:
 - ✓ Key Enrolment Phase
 - ✓ Key Regeneration Phase


- Generation of random numbers [2]:
 - Initialization vectors
 - ✓ Nonces
 - ✓ Challenges
 - Keys
- Source entropy:
 - Unpredictable PUF behaviour
- One example:
 - ✓ SRAM PUF: start-up values

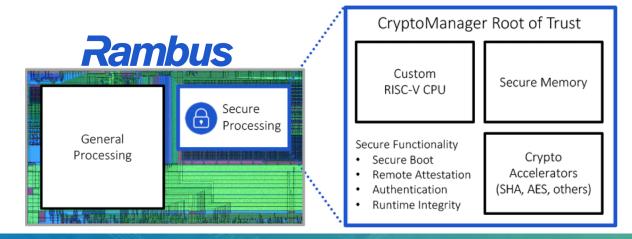
Process Variations

SRAM Start-up Values


- Crypto functions: CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness) [3]
 - ✓ Symmetric Cryptography
 - ✓ Authenticated ciphers
 - ✓ SW and HW realizations
 - ✓ Portfolio of solutions

Introduction Secret-key cryptography Disasters Features	CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness Timeline
Focused competitions: AES eSTREAM SHA-3 PHC CAESAR	M-20, 2012.07.05-06: DIAC: Directions in Authenticated Ciphers. Stockholm. M-14, 2013.01.15: Competition announced at the Early Symmetric Crypto workshop in Mondorf-les-Bains; also announced online. M-7, 2013.08.11-13: DIAC 2013: Directions in Authenticated Ciphers 2013. Chicago. M0, 2014.03.15: Deadline for first-round submissions. M2, 2014.05.15: Deadline for first-round submissions.
Broader evaluations: CRYPTREC NESSIE	M5, 2014.08.23-24: DMC 2014: Directions in Authenticated Cliphers 2014. Santa Barbara. M16, 2015.07.07; Announcement of second-round candidates. M17, 2015.08.29; Deadline for second-round tweaks.
CAESAR details: Submissions Call for submissions Call draft 5 Call draft 4 Call draft 3 Call draft 2 Call draft 1 Committee Frequently asked questions	Mits, 2015.09.15: Deadline for second-round software. Mits, 2015.09.15: Dosodilos in Authenticated Ciphers 2015. Singapore. MZ7, 2016.08.30: Deadline for Verliog/VHDL. MZ9, 2016.08.15: Announcement of Initi-fround candidates. MX00, 2016.09.15: Deadline for Initi-fround Weaks. MX00, 2016.09.25: Deadline for Initi-fround Software. MX01, 2016.01.15: Deadline for Initi-fround Software. MX01, 2017.07.15: Deadline for Initi-fround Verliog/VHDL. MX01, 2017.07.15: Deadline for Initi-fround Software. MX02, 2018.03.05: Announcement of Initi-fround Software. MX03, 2018.03.05: Announcement of Initi-fround Software. MX03, 2018.03.05: Announcement of Initi-fround Software. MX04, 2017.07.15: Deadline for piptings.

- 1) Lightweight applications (resource constrained environments)
- 2) High-performance applications
- 3) Defense in depth


- Crypto functions: NIST Post-Quantum Competition [4]
 - ✓ Second round (26 candidates)
 - ✓ Two categories
 - 1) Public-key Encryption and Key-establishment Algorithms
 - 2) Digital Signatures Algorithms

5. AVAILABLE SOLUTIONS FOR TRUSTED EMBEDDED SYSTEMS USING RISC-V

- CrytpoManager Root of Trust (provided by Rambus) [5]:
 - Family of fully-programmable hardware security co-processor
 - ✓ Security IP
 - ✓ Custom RISC-V CPU (specifically for security)
 - ✓ Standard applications
- Closed solution:
 - ✓ Not privacy-respectful solution
 - ✓ Lack of flexibility to include new crypto functions

5. AVAILABLE SOLUTIONS FOR TRUSTED EMBEDDED SYSTEMS USING RISC-V

- An attested execution processor (Sanctum Processor) [6]:
 - ✓ Secure boot process and remote attestation
 - ✓ Chain of trust rooted at hardware → PUF
 - ✓ RISC-V Rocket chip architecture
- Keystone [7]:
 - ✓ Open framework for custom Trusted Execution Environments
 - ✓ Use of secure hardware enclaves
 - ✓ Authenticate software and chip itself
- Further improvements:
 - ✓ Not integration of hardware crypto functions
 - ✓ Not conceived for small devices (embedded systems)

6. CONCLUSIONS

IMSE

- RISC-V core + Hardware RoT
- Building blocks of RoT (modular, flexible, extensible solution):
 - 1. Silicon PUF
 - ✓ Source of entropy
 - ✓ Re-generation of cryptographic keys & device authentication
 - 2. Software Authenticity
 - ✓ Secure bootloader using PUF response
 - Trusted Execution Environment (TEE) running on top of RISC-V

3. Trusted Applications

- Privacy Enabling Tools, Remote Attestation
- Open issues:
 - Integration of hardware crypto functions
 - Design of hw RoT for small devices (embedded systems)
 - ✓ Inclusion of trusted applications to provide end-to-end solutions

REFERENCES

IMSE

[1] M. Alioto, "Trends in Hardware Security: From basics to ASICs," IEEE Solid-State Circuits Mag., 2019

[2] C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, "Physical Unclonable Functions and Applications: A Tutorial", Proc. Of the IEEE, 102 (8), 2014

[3] <u>https://competitions.cr.yp.to/caesar.html</u>

[4] <u>https://csrc.nist.gov/Projects/Post-Quantum-Cryptography</u>

[5] https://www.rambus.com/security/root-of-trust/cryptomanager-root-of-trust/

[6] I. Lebedev, K. Hogan, S. Devadas, "Secure Boot and Remote Attestation in the Sanctum Processor", IEEE 31st Computer Security Foundations Symposium (CSF), 2018

[7] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, K. Asanovic, "Keystone: An Open Framework for Architecting TEEs", arXiv: 1907.10119, 2019

TRUSTED EMBEDDED SYSTEMS BASED ON RISC-V PROCESSORS

Instituto de Microelectrónica de Sevilla

PIEDAD BROX JIMÉNEZ brox@imse-cnm.csic.es